

ACR Grazing Land and Livestock Management (GLLM) Methodology

SB 1383 Subgroup #1: Fostering Markets for Non-Digester Projects
Sacramento, CA
May 21, 2018

Objectives

- Comprehensive and flexible accounting framework for broad range of beef and dairy GHG mitigation activities
- Focuses on five primary GHG sources/sinks: enteric, manure, fertilizer, fossil fuel, and biotic sequestration
 - Provides modular accounting methods for each of these
 - Tiered approach based on size of impacts
 - Not all necessarily required; depends on project activity
- Non-prescriptive
 - Producer decides what practice change to undertake
 - Methodology doesn't prescribe what to do, only how to do the accounting, using applicable modules

Applicability Conditions

- Dairy and beef operations only
- Project lands managed for grazing/livestock in the project scenario

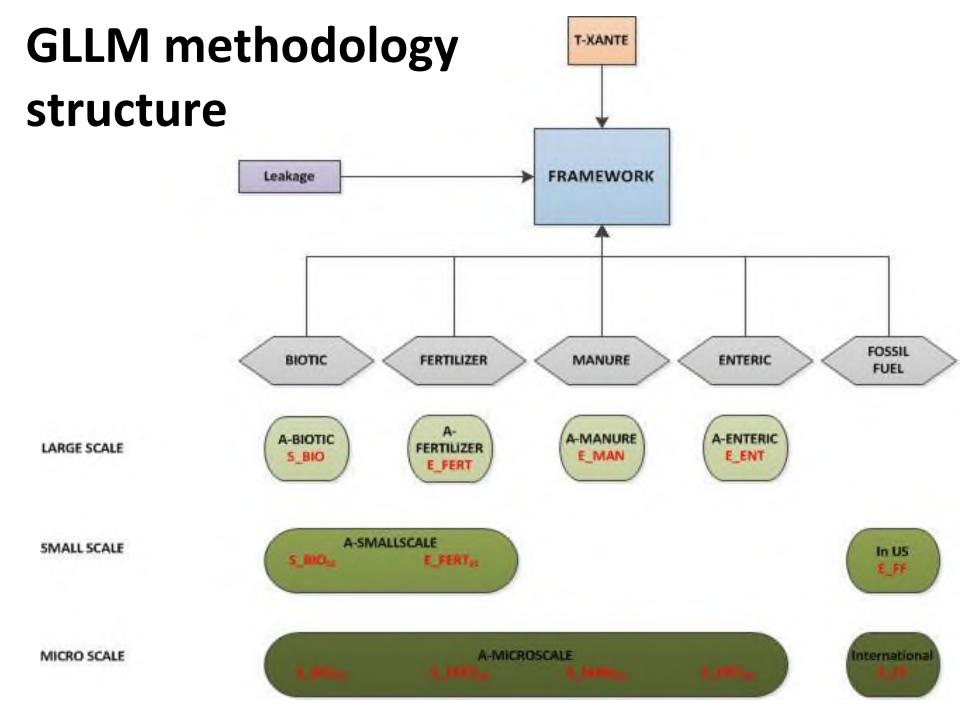
Example practices:

- Implement rotational and management intensive grazing in beef and dairy
- Dietary changes
- Feed additives
- Change manure management system
- Tree planting (silvopasture)
- Convert cropland to pasture

Framework Module

- Overall structure and functionality of methodology
- Applicability conditions for the methodology overall
- Defining the project boundary (geographic boundary, temporal boundary, and GHG SSRs included/excluded from accounting)
- Demonstrating additionality
- Formula to calculate ERTs using output parameters of other modules
- Monitoring requirements

Project Boundary


- Facilities and lands where livestock are held, fed and grazed, in both baseline and project scenarios
 - All entities over which Project Proponent has effective control; may span several commercial entities
 - May include analytical units corresponding to animal management rather than land areas
- May not exclude lands/facilities where emissions increase due to project activity
- May include multiple areas, facilities, owners, and start dates (aggregated)

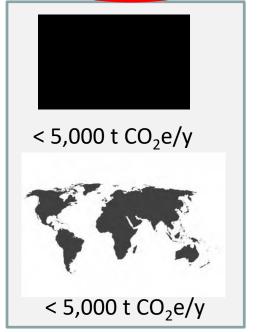
Accounting Modules

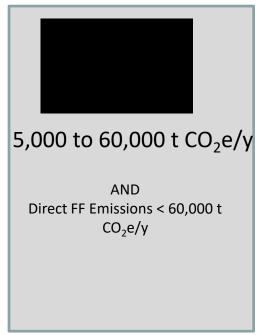
Complexity and data requirements	of required accounting method correspond to the
scale of impacts	expected in a particular SSR

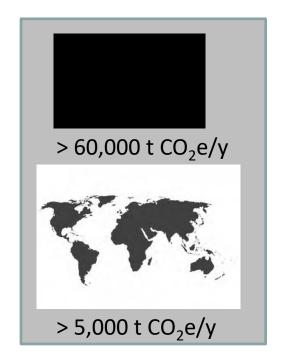
Oddio	or impacto expected in a particular cont
T-XANTE	Ex ante estimate of net reductions directs user to A-MICROSCALE, A-SMALLSCALE, or full accounting module
A-MICROSCALE	Excel tool – simple emission factors, low data requirements when estimated impacts on a SSR are <5,000 tCO ₂ e/y
A-SMALLSCALE	Used in U.S. for biotic, fertilizer and fossil fuel impacts between 5,000 and 60,000 tCO ₂ e/y. (uses IPCC Tier 2 methods)
A-ENTERIC	Used for impacts >5,000 tCO ₂ e/y
A-MANURE	Used for impacts >5,000 tCO ₂ e/y
A-FERTILIZER	Used in U.S. for impacts >60,000 tCO ₂ e/y and outside US for impacts >5,000 tCO ₂ e/y
A-BIOTIC	Used in U.S. for impacts >60,000 tCO ₂ e/y and outside US for impacts >5,000 tCO ₂ e/y
L-GLLM	Activity-shifting and market effects leakage emissions
T-RISK	Tool for calculating buffer contribution for biotic sequestration

Scaled Approach to GHG Accounting

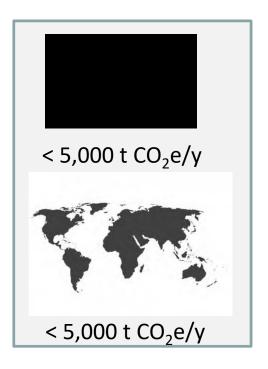
The magnitude of estimated GHG impacts determines the accounting approach




Need an accounting approach before you know the magnitude of estimated **GHG** impacts


MICRO SCALE

Net ER Calculation


$$ERT_GLLM_t = E_ENT + E_MAN + E_FERT + E_FF + (S_BIO*(1-Buffer%)) - E_LK$$

- *E_ENT*, *E_MAN* etc. from applicable module (large, small or micro scale)
- Buffer% from T-RISK tool and is only a deduction from activities with biotic sequestration
- E_LK from L-GLLM and includes both activity-shifting leakage (if required) and market leakage

MICROSCALE Module

MICRO SCALE

- Excel spreadsheet-based tool
- Simplified, automated GHG accounting procedures applied
- Provides a preliminary estimate of expected emission reductions from each source category:
 - Biotic Sequestration (S-BIO)
 - Enteric Fermentation (E-ENT)
 - Manure Management (E-MAN)
 - Fertilizer Use (E-FERT)
 - Fossil Fuel Use (E-FF)
- Output is based on data inputs provided by user for baseline and project scenarios
- Results of A-MICROSCALE → T-XANTE

Microscale: Biotic Sequestration

Based on IPCC Tier 1 accounting methodology

A-MICROSCALE

Parameter Name:	S_BIO	
Parameter Description:	Net microscale biotic seque	estration/emissions (t CO ₂ e)
Calculated value:	33,229	t CO₂e yr ⁻¹

Instructions: Enter data into the light blue cells for both baseline and project scenarios. <u>Use the unit converter box in the upper right as needed.</u>

Select from drop-down menus.

Geographic Region:

Climate Region:

Soil Type:

North America

Warm Temperate Moist

Low Activity Clay

Size of Project Area: 5,000 ha

Land Cover Type Grassland Management Grassland Inputs Cropland Management Cropland Inputs

Are you planting trees in the project area?

BASELINE DATA	PROJECT DA	ATA
Long Term Cultivated Crop	Grassland	▼
N/A	Improved	Land Cover Type
Medium	High	LT Cultivated Crop: Continuously
Full Tillage	N/A	managed > 20 yrs with annual crops.
Medium	N/A	ST Set Aside: Temporary set aside of annual crop or other idle cropland.
		Grassland: Ranges from extensively
	No	managed rangelands to intensively
		managed continuous pasture and hay land.

Total Annual Milk Production (kg cow-1 yr-1)

Fat content of milk: (%)

Parameter Name:

Microscale: Enteric Fermentation

Parameter Description.	Net microscare enter	LIC CITII331	ons (t co	<u>'</u>										
Calculated value:	0	t CO₂e yr	-1											
INSTRUCTIONS: Enter data into LIGHT BLUE CELLS for both baseline and project scenarios	s. Change values in gra	ıy cells on	ly if you h	ave projec	t specific	data, otherwis	se leave exi	istin	g default va	lues as th	еу арреаг	in the cell	:	
Geographic Region:	North America]												
			BASE	LINE DATA							PR	OJECT DAT	Α	

8,395

4.0

1,205

4.0

0

Growing Mature | Mature | Calves on heifers/ | Replacement | Feedlot Click on category to see description. --> Dairy Cows females Males forage steers /growing cattle Number of Animals Produced Per Year 1,000 300 150 300 Cows used to produce 90 0 % of Females that give birth in a year: offspring for meat OR cows used for more Feeding Situation: Enter the % of the year under each feeding situation per animal category. than one production 80 80 80 80 Stall-fed/Confined (tethered, pen, barn) purposes: milk/meat On pasture (confined in areas with sufficient forage) 20 20 20 20 0 Grazing large areas (i.e., rangeland) Average Live-Weight of Animal (kg) 600 500 800 185 265 375 415 Average Daily Weight Gain (kg day-1) 0.0 0.0 0.9 0.7 0.4 1.3

E ENT

				Growing	Replace	
	Mature	Mature	Calves on	heifers/	ment/gro	Feedlot
Dairy Cows	females	Males	forage	steers	wing	cattle
1,000	900	40	75	300	150	300
90	80	0	0	0	0	0
80	80	80	80	80	80	80
20	20	20	20	20	20	20
0	0	0	0	0	0	0
600	500	800	185	265	375	415
0.0	0.0	0.0	0.9	0.7	0.4	1.3
8,395	1,205	0	0	0	0	0
4.0	4.0	_	_	_	_	_

Feeding Regime: Enter the type and % of each feed in the total <u>annual</u> diet of each animal category.

Select feed name from drop down menu. % of total diet

						Growing		
			Mature	Mature	Calves on	heifers/	Replacement	Feedlot
Feed Name	Int'l Feed #	Dairy Cows	females	Males	forage	steers	/growing	cattle
Corn, distiller's grains w/ solubles, dried	5-28-236	50	50	100	0	100	100	100
Grasses, intensively managed pasture	1-02-244	50	50	0	100	0	0	0
		0	0	0	0	0	0	0
		0	0	0	0	0	0	0
		0	0	0	0	0	0	0
		0	0	0	0	0	0	0
		0	0	0	0	0	0	0

				Growing	Replace	
	Mature	Mature	Calves on	heifers/	ment/gro	Feedlot
Dairy Cows	females	Males	forage	steers	wing	cattle
50	50	100	0	100	100	100
50	50	0	100	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Microscale: Manure Management

A-MICROSCALE

Parameter Name: E MAN

Parameter Description: Net microscale manure emissions (t CO₂e)

Calculated value : 402 t CO₂e yr⁻¹

Instructions: Enter data into light blue cells for both baseline and project scenarios.

Geographic Region:

Average Annual Temperature:

North America 18 ° C

% of manure managed under each system

Baseline	Project
0	
0	
100	
0	
0	
0	
0	
0	10
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
	0 0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Based on IPCC Tier 2
methodology → different
manure management
systems specified

Microscale: Fertilizer Use

A - MICROSCALE

UNIT CONVERTER

pounds = kilograms (kg) acres = hectares (ha)

Parameter Name: E-FERT

Parameter Description: Net microscale fertilizer emissions (t CO₂e)

Calculated value: -193 t CO₂e yr⁻¹

Instructions: Enter data into light blue cells for both baseline and project scenarios.

Synthetic Fertilizer Application:

Anhydrous Ammonia (NH₃) "Ammonia"

Ammonium Sulfate [(NH₄)2SO₄]

Monoammonium Phosphate (MAP)

Diammonium Phosphate (DAP)

Ammonium Nitrate (NH₄NO₃)

Calcium Ammonium Nitrate (CAN)

Urea Application:

Amount of urea fertilization (kg yr-1)

Organic Manure Application:

% of managed manure applied to fields:

	Base	line		Pro	oject
Total Weight Applied (kg		Area of Land Where Fertilizer is	Total Weight Applied (kg		Area of Land Where Fertilizer is Applied
yr ⁻¹)	%N	Applied (ha)	yr ⁻¹)	%N	(ha)
15,000	82	5,000	15,000	82	5,000
	21	5,000		21	5,000
	11	5,000		11	5,000
	18	5,000		18	5,000
	34	5,000		34	5,000
	26	5,000		26	5,000

0 5,000 0 5,00

100

Microscale: **Fossil Fuel Use**

A-MICKOSCALE

Project

Fuel Units

Parameter Name: E_FF

Parameter Description: Net microscale fossil fuel emissions (t CO₂e)

153 t CO₂e yr⁻¹ Calculated value:

Instructions: Enter data on annual fuel quantities into the light blue cells. Raceline

	baseiiile	Project	ruei Oilits
Ethane	0	0	Gallons
Propane	0	0	Gallons
Butane	0	0	Gallons
LPG	0	0	Gallons
Motor Gasoline	20,000	5,000	Gallons
Aviation Gasoline (avgas)	0	0	Gallons
Other Kerosene	0	0	Gallons
Gas/Diesel Oil	10,000	8,000	Gallons
Biodiesel	0	0	Gallons
Biogas	0	0	Gallons
Other Liquid Biofuels	0	0	Gallons

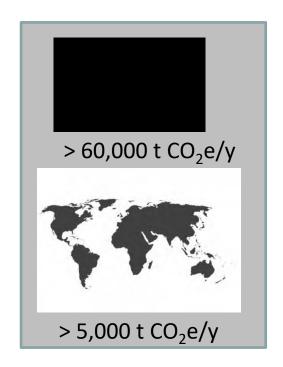
If necessary, change units using drop-down menus.

- Fully automated
- Uses results from A-MICROSCALE to display which modules should be used

Is your project located within the continental United States?

yes

MODULE SELECTION FOR YOUR PROJECT:


	MODUL SELECTION FOR FOSICION		
	Emission Category	Module Selection	
<5,000 t CO ₂ e	Biotic Sequestration:	A-SMALLSCALE	
	Enteric Fermentation:	A-MICROSCALE	
	Manure:	A-MANURE	
<5,000 t CO ₂ e	Fertilizer:	A-MICROSCALE	
<5,000 t CO ₂ e	Fossil Fuel:	A-MICROSCALE	

The Large Scale Modules

LARGE SCALE

A-BIOTIC
A-ENTERIC
A-MANURE
A-FERTILIZER

May be elected instead for any or all of the applicable modules

A-BIOTIC: Model

- Examples include Century, DayCent and Roth-C
- Must be studies (e.g. journal articles demonstrating use of model is appropriate in region where it is being applied)
- Model must have potential to determine soil carbon to an identified depth while considering:
 - Crop/grass type and productivity
 - Crop/grass management (including tillage)
 - Livestock presence, type and number
 - Manure applied, produced and management of manure application/production
- Modeling of herbaceous vegetation is an optional capability that must be used where present
- Validation of model required with limited field data sampling at each verification

A-BIOTIC – Woody Biomass

ACR Tool for Estimation of Stocks in Carbon Pools and Emissions from Emissions Sources (CPES)

- Used to quantify sequestration from trees and shrubs
- Stocks derived from field measurement
- Baseline stocks equal to stocks at start of project

A-BIOTIC: Data Inputs

- Tillage
 - type
 - depth
 - frequency
- Livestock
 - presence
 - type
 - manure application, production and management
- Grass
 - type
 - productivity
 - management
- CPES
 - trees and shrubs (field measurement)

A-ENTERIC

- Divided by livestock sub-category:
 - Lactating cows
 - Dry cows
 - Heifers and steers
- Calculations based on empirical equations developed using animal and feed data collected in open-circuit respiration chambers from 1963 to 1995

A-ENTERIC Data Inputs

- Number of livestock
- Body weight of livestock
- Information about different feed types:
 - Composition of annual diet (% of each feed)
 - Dietary ether extract
 - Gross energy intake
 - Dietary neutral detergent fiber

A-MANURE

- Calculations based on Dairy GEM
- Dynamic baseline
- Emissions dependent on manure system and time of year (ambient temperature)
 - CO₂: methane flaring from enclosed manure storage
 - CH₄: sum of emissions from:
 - Barn floors and open lots
 - Stored manure (covered, uncovered, dry stacks)
 - Manure applied to fields
 - Manure from grazing animals
 - N₂O: sum of emissions from:
 - Barn floors / dry lots
 - Unenclosed storage of manure / stacked dry manure

A-MANURE Data Inputs

- Type(s) of manure management system(s)
- Quantity of feces produced
- Properties of feces:
 - Volatile solids content
 - Manure pH
- Quantities of manure storage and loss
- Ambient temperatures

A-FERTILIZER Model

- No specific model is endorsed (e.g., DNDC, Daycent)
- Must demonstrate that model is appropriate for climate/agroecological zone in which the project is located
- Output must be the fertilizer-derived emission at a specific point in time

A-FERTILIZER Data Inputs

- Atmospheric Factors
- Daily meteorology
- Edaphic factors (e.g., clay content, soil pH)
- Cropping factors (e.g., crop type, planting and harvest dates)
- Tillage factors (e.g., date and depth of tillage)
- Fertilizer application factors (e.g., type and application rate)
- Irrigation factors (e.g., # irrigation events, date)

Thank You!

Lauren Nichols, Technical Manager Inichols@winrock.org (571) 402-4816